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Abstract

Transient heat conduction problem is stated by the differential heat conduction equation, thermal boundary conditions on the exter-
nal and internal boundary portions and the initial condition within the domain. Next an arbitrary behavioral functional is defined and its
first-order sensitivities are determined using the material derivative concept as well as both the direct and adjoint approaches. The most
used shape domain modifications are discussed in order to investigate the effect of design parameters on the integral radiation condition.
The shape optimization problem is next formulated applying the obtained sensitivities. The illustration is the simple example of the shape
optimization.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Radiative heat transfer is the important fundamental
phenomena existing in practical engineering. The examples
are the solar radiation in buildings, foundry engineering
and solidification processes, die forging, chemical engineer-
ing, composite structures applied in industry. The physical
analysis demonstrates that the radiative heat transfer prob-
lems are encountered as well in textiles (i.e. industrial tex-
tiles, textiles designed for use under hermetic protective
barrier, multilayer clothing materials, etc.) as in textile
structures (i.e. needle heating in heavy industrial sewing).
Each of the above-mentioned radiative problems is the par-
ticular case characterized by a set of governing equations.
Dems and Korycki [4] discuss some of these problems
and give a short review of literature. The radiation within
the hole is described here by the non-local integral condi-
tion according to Bialecki et al. [1,2]. The result is an
integral equation describing the radiation intensification
(caused by the reflected radiation) and absorbing of the
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radiation within the isothermal and participating medium.
These problems can be solved using different methods (cf.
[15]). Roche and Sokolowski [14] gave also more informa-
tion concerning numerical methods applying in optimiza-
tion practice.

The presented paper is an extension of the steady prob-
lems stated and discussed by Dems and Korycki [4]. Other
best general references here can be Dems and Mróz [3],
Dems and Rousselet [6,7], and Korycki [10–13]. The first-
order sensitivities of an arbitrary behavioral functional will
be formulated as a function of the transformation velocity
field and solutions of primary, direct and adjoint heat
transfer problems, cf. [9].

The aim of this paper is to introduce the first-order sen-
sitivities of an arbitrary behavioral functional to the shape
design problems associated with the radiative heat transfer.
A much more general modeling of transient conduction
problems is considered here in view of radiative heat trans-
fer on both the external and internal boundaries described
by different conditions. These problems were not yet con-
sidered in the analyzed literature for the integral formula-
tion of the radiation condition in transient problems.
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Fig. 1. Primary heat conduction problem.

Nomenclature

a absorption coefficient of the radiation within the
medium

A material conductivity matrix
b design parameters vector
c material heat capacity
C structural cost, constraint in the shape optimiza-

tion problem
C0 structural cost on the assumed level
eb(T) = rT4 blackbody emissive power described by the

Stefan–Boltzmann law
f heat generation source of the primary structure
f a heat generation source of the adjoint structure
F optional objective functional
gp = Dg/Dbp global (material) derivative of the function

g with respect to design parameter bp

gp = og/obp local (domain) derivative of the function g

with respect to design parameter bp calculated
for the fixed domain X

h surface film conductance
H main curvature of the structural boundary C
K(r,p) kernel function of the radiation
n unit vector directed outwards on the boundary

C
N number of objective functionals
p vector-coordinate of the observation point
P number of design parameters
qn = n Æq heat flux density normal to the boundary
~qr

n ¼ n � ~qr radiative heat flux density normal to the
internal boundary Cr

q heat flux density vector
qa heat flux density vector of the adjoint structure
q* initial heat flux density vector
q*a initial heat flux density vector of the adjoint

structure
r vector-coordinate of the current point
t time of the primary and additional problem
T state variable of the primary problem, the tem-

perature field
T a state variable of the adjoint problem, the tem-

perature field within adjoint structure
T p state variable of the additional problem associ-

ated with design parameter bp

T1 surrounding temperature
T a
1 adjoint surrounding temperature

Tm temperature measured during the optimization
on the boundary portion Cm

u unit cost of the material
vp(x,b, t) transformation velocity field associated with the

design parameter bp

vp
n ¼ n � vp transformation velocity normal to the bound-

ary
x vector of the coordinates
C external boundary surrounding the domain X
CT external boundary portion of the prescribed

temperature
Cq external boundary portion of the prescribed

heat flux density
Cc external boundary portion of the prescribed

convectional heat flux density
Cd external boundary portion with the radiation
Cr internal boundary with the radiation
e surface emissivity
r the Stefan–Boltzmann constant
R discontinuity line between two adjacent parts of

the piecewise smooth boundary
s time of the adjoint problem
Up, Ur angles between the line of sight and the normal

to the surface directed outwards on C at the
observation and the current points, respectively

u(x,b, t) given function of the space x, the design
parameters b, and the time t

v Lagrange multiplier which is an optional real
number

x rotation vector characterizing the rotation of the
domain

n2 additional variable (slack variable) in Lagrange
functional

X thermal anisotropic domain of the structure
$ gradient operator
(Æ),D local derivative of the adequate function (Æ) with

respect to D
(Æ)p global derivative of the adequate function (Æ)

with respect to design parameter bp
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2. Primary heat conduction problem

Let us introduce the transient heat conduction problem
within a thermal anisotropic domain X bounded by the
boundary C (Fig. 1). The state variable is now the temper-
ature T. The radiation on the part Cd of the external
boundary is stated using the Stefan–Boltzmann law. The
boundary portion Cr is an internal boundary and the radi-
ation can be described using the most general form of radi-
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ation condition. Thus, the heat conduction equation, the
boundary conditions as well as the initial condition are
given in the form

�divqþ f ¼ c dT
dt

q ¼ A � rT þ q�

)
x 2 X;

T ðx; tÞ ¼ T 0ðx; tÞ x 2 CT ;

qr
nðx; tÞ ¼ rT ðx; tÞ4 x 2 Cd ;

qnðx; tÞ ¼ n � qðx; tÞ ¼ q0
nðx; tÞ x 2 Cq;

n � ~qrðx; tÞ ¼ ~qr
nðx; tÞ x 2 Cr;

qnðx; tÞ ¼ h½T ðx; tÞ � T1ðx; tÞ� x 2 Cc;

T ðx; t ¼ 0Þ ¼ T 0ðx; t ¼ 0Þ x 2 ðX [ CÞ.

ð1Þ

To determine the radiative heat flux density ~qr
n on the

boundary Cr of the convex hole we solve the governed radi-
ation condition stated by Bialecki [1], discussed by Dems
and Korycki [4]

~qr
nðpÞ þ eðpÞeb½T ðpÞ�

¼ eðpÞ
Z

Cr

eb½T ðrÞ� þ
1� eðrÞ

eðrÞ ~qr
nðrÞ

� �
Kðr; pÞ

� expð�ajr� pjÞdCr þ eðpÞebðT mÞ

�
Z

Cr

Kðr; pÞ½1� expð�ajr� pjÞ�dCr. ð2Þ

Kernel function depends on the geometry of the hole (jr � pj
is the distance between the current and observation points)
and for two-dimensional problems can be expressed accord-
ing [1]

Kðr; pÞ ¼ cos Up cos Ur

2jr� pj . ð3Þ

The shape variation of domain X together with its exter-
nal boundary C due to an infinitesimal transformation pro-
cess can be defined according [6,7] in the form (cf. Fig. 2)

X! Xt : xt ¼ xþ duðx; b; tÞ ¼ xþ ouðx; b; tÞ
obp

dbp

¼ xþ vpðx; b; tÞdbp; ð4Þ

where a transformation velocity field is treated as a time-
like parameter. Let us state an arbitrary behavioral func-
tional associated with above heat transfer problem, given
in the form
xt

x3

x1 x2

x

δϕ

Fig. 2. Infinitesimal transformation of the domain X with its external
boundary C.
F ¼
Z tf

0

Z
XðbÞ

WðT ;rT ;q;f ; _T ÞdXþ
Z

CðbÞ
cðT ;qn;T1ÞdC

" #
dt;

ð5Þ
where W and c are continuous and differentiable functions
of their parameters. The first-order sensitivity Fp is consid-
ered as the material derivative of functional F with respect
to the design parameter bp according [16]. After some trans-
formations we express the sensitivity in the basic form

F p ¼
DF
Dbp

¼
Z tf

0

Z
X
½W;T T p þrrT WðrT Þp þW;q � qp þW;ffp

þW; _T
_T p þWdivvp�dXdt þ

Z tf

0

Z
C
½c;T Tp þ c;qn

ðqnÞp

þ c;T1ðT1Þp þ cðdivCvp � 2Hvp
nÞ�dCdt; ð6Þ

where rrT W ¼ oW
oT ;1

; oW
oT ;2

; oW
oT ;3

��� ���. The unknown sensitivities of

state fields in Eq. (6) can be derived using the direct
approach to sensitivity analysis or can be eliminated from
Eq. (6) by means of adjoint state fields, obtaining as the
result of solution of adjoint heat transfer problem, alter-
natively.
3. Direct approach to sensitivity analysis

The direct approach is most useful for calculating the
sensitivities of entire response field with respect to a few
design variables (Fig. 3). Dems and Rousselet [6,7], Dems
et al. [5] and Korycki [10–13] analyzed this approach for
example. The solutions of the additional heat conduction
problems associated with variation of each design parame-
ter bp are now necessary to obtain the first-order sensitivi-
ties of the functional Eq. (5). The additional structure has
the same shape and thermal properties as the primary one
and is characterized by the heat conduction equation,
boundary and initial conditions, respectively. Above condi-
tions are stated by differentiation of primary equations
with respect to design parameters.

The governing equations for the additional structure are
formulated applying Dems et al. [5], Dems and Rousselet
[6], as well as by using Eq. (1) in the following final
form:
ΓT T0p(x,t)

A f p q*p

Γ
Ω

c Γd

p
nq  (x,t) Γr (x,t)

Γq
0p
nq (x,t)

(x,t)

Fig. 3. Additional heat conduction problem.
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Fig. 4. Parameters of the kernel function for translation of the domain.
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�divqp þ f p ¼ c dT p

dt

qp ¼ A � rT p þ q�p

�
x 2 X;

qp
nðx; tÞ ¼ ðq0

nÞp þ q0
C � rCvp

n �rCq0
n � v

p
C � q0

n;nvp
n x 2 Cq;

T pðx; tÞ ¼ T 0p ¼ T 0
p �rT 0 � vp x 2 CT ;

qp
nðx; tÞ ¼ n � qp ¼ hðT p � T p

1Þ þ qC � rCvp
n x 2 Cc;

qrp
n ¼ 4rT 3ðT p þrT � vpÞ � rqr

n � vp þ qr � rCvp
n x 2 Cd ;

n � ~qrp ¼ ~qrp
n x 2 Cr; T p

0ðx; 0Þ ¼ T 0p �rT 0 � vp x 2 ðX [ CÞ.
ð7Þ

In order to calculate the radiative heat flux density ~qrp
n on

the boundary Cr of the convex hole, we should formulate the
radiation condition. Let us differentiate the condition Eq. (2)
for primary problem using the material derivative concept.
Our procedure starts with the left-hand side of Eq. (2),
denoted by (L). Introducing Eq. (7) and the Stefan–
Boltzmann law we can determine the following condition:

DL

Dbp
¼ D

Dbp
½~qr

nðpÞ� þ
D

Dbp
½eðpÞ�eb½T ðpÞ� þ eðpÞ D

Dbp
½eb½T ðpÞ��

¼ n � ð~qrÞp þ r½T ðpÞ�4epðpÞ þ 4rT ðpÞ3eðpÞ½T ðpÞ�p
¼ ð~qr

nÞ
p � ~qr

C � rCvp
n þrC~qr

n � v
p
C þ ~qr

n;nvp
n

þ rT ðpÞ3½T ðpÞepðpÞ þ 4T pðpÞ þ 4rT ðpÞ � vp�. ð8Þ
Our next objective is to determine the material derivative

of the right-hand side of Eq. (2), denoted by (R). For the con-
stant value of absorption coefficient it has the following
form:

DR

Dbp
¼ D

Dbp
½eðpÞ�

Z
Cr

eb½T ðrÞ�þ
1� eðrÞ

eðrÞ ~qr
nðrÞ

� �
�Kðr;pÞexpð�ajr�pjÞdCr

þ eðpÞ
Z

Cr

D

Dbp
½eb½T ðrÞ��þ

D

Dbp

1� eðrÞ
eðrÞ ~qr

nðrÞ
�

þ1� eðrÞ
eðrÞ

D

Dbp
~qr

nðrÞ
�

Kðr;pÞexpð�ajr�pjÞdCr

þ eðpÞ
Z

Cr

eb½T ðrÞ�þ
1� eðrÞ

eðrÞ ~qr
nðrÞ

� �

� D

Dbp
½Kðr;pÞ�expð�ajr�pjÞdCr

þ eðpÞ
Z

Cr

eb½T ðrÞ�þ
1� eðrÞ

eðrÞ ~qr
nðrÞ

� �

�Kðr;pÞexpð�ajr�pjÞ D

Dbp
½dCr�

þ D

Dbp
½eðpÞ�ebðT mÞþ eðpÞ D

Dbp
½ebðT mÞ�

� �

�
Z

Cr

Kðr;pÞ½1� expð�ajr�pjÞ�dCrþ eðpÞebðT mÞ

�
Z

Cr

D

Dbp
½Kðr;pÞ�½1� expð�ajr�pjÞ�dCr

þ eðpÞebðT mÞ
Z

Cr

Kðr;pÞ½1� expð�ajr�pjÞ� D

Dbp
½dCr�.

ð9Þ
The main difficulty is to formulate the derivative of the
kernel function with respect to design parameter. Kernel
function depends on the geometry of the hole (see Eq.
(3)) and can change during the shape modification. Conse-
quently, we should discuss the most used domain modifica-
tions in order to investigate the effect of design parameters
on the kernel function.

3.1. Translation

The angles Up and Ur are design parameters independent
(Fig. 4). Introducing the infinitesimal translation vector db,
the transformation of the domain can be described for two-
dimensional problems as follows

x� ¼ xþ db; ð10Þ
where x and x* denote the coordinates of an optional point
before and after translation, respectively. The distance be-
tween the current point and the observation point can be
determined, in view of Eq. (10) and Fig. 4, in the following
form

jr� � p�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�r � x�pÞ

2 þ ðy�r � y�pÞ
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr � xpÞ2 þ ðyr � ypÞ

2
q

¼ jr� pj. ð11Þ

From Eq. (11) we have, that the kernel function is design
parameter independent and the discussed material deriva-
tive is equal to zero DK/Dbp = Kp = 0.

3.2. Rotation

The angles Up and Ur are design parameters independent
(Fig. 5). Let us assume the two-dimensional problem and
the rotation center situated on the same plane as the
domain X. The infinitesimal rotation process can be stated
by virtue of the infinitesimal rotation vector dx as follows
[3]:

x� ¼ xþ dx� x. ð12Þ
The distance between the current point and the observa-

tion point is equal to

jr� � p�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�r � x�pÞ

2 þ ðy�r � y�pÞ
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr � xpÞ2 þ ðyr � ypÞ

2
q

¼ jr� pj. ð13Þ
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Fig. 5. Parameters of the kernel function for rotation of the domain.
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It follows that the kernel function is design parameters
independent and DK/Dbp = Kp = 0.

Introducing the Stefan–Boltzmann law, the material
derivatives of the total hemispherical emissivity and the
boundary element [5–7,10–13], as well as Eq. (7), we obtain
from Eq. (9), after some simple transformations, the fol-
lowing expression:

DR

Dbp
¼ epðpÞ

Z
Cr

rT ðrÞ4 þ 1� eðrÞ
eðrÞ ~qr

nðrÞ
� �

� Kðr; pÞ expð�ajr� pjÞdCr

þ eðpÞ
Z

Cr

4rT ðrÞ3½T pðrÞ þ rT ðrÞ � vp� þ 1� epðrÞ
epðrÞ

~qr
nðrÞ

�

þ 1� eðrÞ
eðrÞ ½ð~q

r
nÞ

p � ~qr
C � rCvp

n þrC~qr
n � v

p
C þ ~qr

n;nvp
n�
�

� Kðr; pÞ expð�ajr� pjÞdCr

þ eðpÞ
Z

Cr

rT ðrÞ4 þ 1� eðrÞ
eðrÞ ~qr

nðrÞ
� �

� expð�ajr� pjÞ½Kpðr; pÞ
þ Kðr; pÞðdivCvp � 2Hvp

nÞ�dCr þ rðT mÞ3

� ½epðpÞT m þ 4eðpÞðT mÞp�
Z

Cr

Kðr; pÞ expð�ajr� pjÞdCr

þ rðT mÞ4eðpÞ
Z

Cr

½1� expð�ajr� pjÞ�

� ½Kpðr; pÞ þ Kðr; pÞðdivCvp � 2Hvp
nÞ�dCr. ð14Þ

The radiation condition for the additional structure associ-
ated with the pth design parameter can be obtained by
comparison of Eqs. (8) and (14) in the form

ð~qr
nÞ

p � ~qr
C � rCvp

n þrC~qr
n � v

p
C þ ~qr

n;nvp
n

þ rT ðpÞ3½T ðpÞepðpÞ þ 4T pðpÞ þ 4rT ðpÞ � vp�

¼ epðpÞ
Z

Cr

rT ðrÞ4 þ 1� eðrÞ
eðrÞ ~qr

nðrÞ
� �

� Kðr; pÞ expð�ajr� pjÞdCr

þ eðpÞ
Z

Cr

4rT ðrÞ3½T pðrÞ þ rT ðrÞ � vp�
n

þ 1� epðrÞ
epðrÞ

~qr
nðrÞ þ

1� eðrÞ
eðrÞ
� ð~qr
nÞ

p � ~qr
C � rCvp

n þrC~qr
n � v

p
C þ ~qr

n;nvp
n

h io
� Kðr; pÞ expð�ajr� pjÞdCr

þ eðpÞ
Z

Cr

rT ðrÞ4 þ 1� eðrÞ
eðrÞ ~qr

nðrÞ
� �

expð�ajr� pjÞ

� ½Kpðr; pÞ þ Kðr; pÞðdivCvp � 2Hvp
nÞ�dCr

þ rðT mÞ3½epðpÞT m þ 4eðpÞðT mÞp�

�
Z

Cr

Kðr; pÞ expð�ajr� pjÞdCr þ rðT mÞ4eðpÞ

�
Z

Cr

½1� expð�ajr� pjÞ�½Kpðr; pÞ þ Kðr; pÞ

� ðdivCvp � 2Hvp
nÞ�dCr. ð15Þ

The left-hand side of above equation is defined by the vec-
tor-coordinate p at the observation point, and the right-
hand side by the vector-coordinate r at the current point.
The first three integrals on the right-hand side constitute
the radiation of the walls of the convex hole. As well the
material and the radiation properties of the walls, as the
medium within the hole have the same properties for
primary and additional structures. The last two integrals
characterize the radiation within the medium and describe
dissipation of the radiation within the hole.

The emissivity of the surface e has different descriptions
(cf. [15]). The performed analysis can be considerably sim-
plified for the same radiation properties on the whole
boundary of the convex hole. Thus, we assume that the
total hemispherical emissivity is position independent
ep = De/Dbp = 0; and the domain is translated or rotated.
The radiation condition for the additional structure Eq.
(15) can be transformed to the following:

ð~qr
nÞ

p � ~qr
C � rCvp

n þrC~qr
n � v

p
C þ ~qr

n;nvp
n

þ 4rT ðpÞ3½T pðpÞ þ rT ðpÞ � vp�

¼ eðpÞ
Z

Cr

�
4rT ðrÞ3½T pðrÞ þ rT ðrÞ � vp�

þ 1� eðrÞ
eðrÞ ½ð~q

r
nÞ

p � ~qr
C � rCvp

n þrC~qr
n � v

p
C þ ~qr

n;nvp
n�
�

� Kðr; pÞ expð�ajr� pjÞdCr

þ eðpÞ
Z

Cr

rT ðrÞ4 þ 1� eðrÞ
eðrÞ ~qr

nðrÞ
� �

Kðr; pÞ

� expð�ajr� pjÞðdivCvp � 2Hvp
nÞdCr

þ 4eðpÞðT mÞprðT mÞ3
Z

Cr

Kðr; pÞ expð�ajr� pjÞdCr

þ rðT mÞ4eðpÞ
Z

Cr

Kðr; pÞ expð�ajr� pjÞ

� ðdivCvp � 2Hvp
nÞdCr; p ¼ 1; 2; . . . ; P . ð16Þ

We can see at once, that the solution of Eq. (16) is more
complicated in relation to the primary radiation condition
Eq. (2). Both of them can be solved using the same method,
for example the weighted residual method discussed by
Bialecki [1] and Finlayson [8].
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Fig. 6. Adjoint heat conduction problem.
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The external boundary C of the additional structure
is composed from four portions C = CT [ Cq [ Cc [ Cd.
Under the above assumption, the first-order sensitivity of
an arbitrary behavioral functional F defined by Eq. (6)
can be expressed according Dems and Rousselet [6]

F P ¼
Z

X
W; _T T p dX

� �tf

0

þ
Z tf

0

Z
X

W;T �
d

dt
ðW; _T Þ

� 	
T p

��

þrrT W � rT p þrqW � qp þW;ff
p

�
dX

þ
Z

CT

½c;T ðT 0
p �rCT 0 � vp

C � T ;0nvp
nÞ

þ c;qn
ðqp

n � qC � rCvp
nÞ�dCT

þ
Z

Cq

½c;T T p þ c;qn
ðq0

np �rCq0
n � v

p
C � q0

n;n � vp
nÞ�dCq

þ
Z

Cc

½c;T T p þ c;qn
hðT p � T p

1Þ�dCc þ
Z

Cd

c;T T p dCd

þ
Z

C
ðWþ c;n � 2HcÞvp

n dCþ
Z

C
c;T1T p

1 dC

þ
Z

R
�cvp � t½

�
dt p ¼ 1; 2; . . . ; P . ð17Þ

Analyzing the real problems, we conclude that c satisfy
often the following conditions

c ¼ cðT ; qnÞ on CT [ Cq; c ¼ cðT ; T1Þ on Cc;

c ¼ cðT Þ on Cd . ð18Þ

Considering Eq. (18) and keeping in mind that the total
derivatives T 0

p on CT and ðq0
nÞp on Cq are known in advance,

Eq. (17) can be rewritten in the form

F P ¼
Z

X
W; _T T p dX

� �tf

0

þ
Z tf

0

Z
X

W;T �
d

dt
ðW; _T Þ

� 	
T p

��

þrrT W � rT p þrqW � qp þW;ff
p

�
dX

þ
Z

CT

½c;T ðT 0
p �rCT 0 � vp

C � T ;0nvp
nÞ

þ c;qn
ðqp

n � qC � rCvp
nÞ�dCT

þ
Z

Cq

½c;T T p þ c;qn
ðq0

np �rCq0
n � v

p
C � q0

n;n � vp
nÞ�dCq

þ
Z

Cc

½c;T T p þ c;T1T p
1�dCc þ

Z
Cd

c;T T p dCd

þ
Z

C
ðWþ c;n � 2HcÞvp

n dCþ
Z

R
�cvp � t½

�
dt

p ¼ 1; 2; . . . ; P . ð19Þ

Above sensitivity expression is a sum of integrals of time
as well as within the domain X, on the whole external
boundary C, the parts CT, Cq, Cc, Cd and along the curve
R between two adjacent parts of the piecewise smooth
boundary C (cf. [6,13]). The thermal state fields of the addi-
tional structure Tp, qp and qp

n (i.e. the local sensitivities of the
thermal state fields for the primary body) can be computed
from additional heat conduction problems associated with
the design parameter bp. These problems are expressed by
Eqs. (7), (15) and (16). For P shape design parameters, eval-
uation of the first-order sensitivity vector Fp by the direct
method requires the solution of P + 1 problems: i.e. the pri-
mary conduction problem and P additional conduction
problems associated with each design parameter bp.

4. Adjoint approach to sensitivity analysis

This alternative method for calculating the first-order
sensitivity of the thermal functional Eq. (5) requires the
solution of the one adjoint heat transfer problem and the
primary heat conduction problem. Above adjoint and pri-
mary structures have the same shape, the thermal and the
radiation properties (cf. Fig. 6). The adjoint method is
most convenient for estimating the first-order sensitivities
with respect to a few objective functionals. The governing
equations of the adjoint heat conduction problem are the
heat conduction equation within the structure and the
boundary and initial conditions (cf. [6,13])

�divqa þ f a ¼ c dT a

ds

qa ¼ A � rT a þ q�a

�
x 2 X;

T aðx; sÞ ¼ T 0aðx; sÞ x 2 CT ;

qa
nðx; sÞ ¼ n � qa ¼ q0a

n ðx; sÞ x 2 Cq;

qa
nðx; sÞ ¼ n � qa ¼ hbT aðx; sÞ � T a

1ðx; sÞc x 2 Cc;

n � qar ¼ qar
n ðx; sÞ x 2 Cd ;

n � ~qar ¼ ~qar
n ðx; sÞ x 2 Cr;

Taðx; s ¼ 0Þ ¼ Ta
0ðx; s ¼ 0Þ x 2 ðX [ CÞ.

ð20Þ

The radiative heat flux density ~qar
n on the internal bound-

ary Cr is the solution of the radiation condition for adjoint
structure. This condition is due to Bialecki [1] and has the
form very similar to the condition for the primary problem,
namely

~qar
n ðpÞ þ eðpÞeb½T aðpÞ�

¼ eðpÞ
Z

Cr

eb½T aðrÞ� þ 1� eðrÞ
eðrÞ ~qar

n ðrÞ
� �

Kðr; pÞ

� expð�ajr� pjÞdCr þ eðpÞebðT mÞ

�
Z

Cr

Kðr; pÞ½1� expð�ajr� pjÞ�dCr ð21Þ

The left-hand side of Eq. (21) is calculated at the observa-
tion point defined by the vector p, whereas the right-hand
side at the current point defined by the vector r. The total
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heat flux for the adjoint structure is stated using the flux
of radiant emission of the wall, the blackbody emissive
power and the emissivity of the surface. The first term on
the right-hand side of Eq. (21) describes the radiant energy
of the wall. The second term on the right-hand side has the
same form as for primary structure (cf. Eq. (2)) and de-
scribes the radiation of the isothermal and participating
in radiating process medium within the hole.

Our next objective is to formulate the conditions for
adjoint structure using the heat conduction equation Eq.
(20). We follow [4] in considering the following identity:Z

X
cT aT p dX

� �
t¼tf

þ
Z tf

0

Z
X
ðT pf a þrT p � q�aÞdXdt

þ
Z tf

0

Z
CT

T 0aqp
n dCT dt �

Z tf

0

Z
Cq

T pq0a
n dCq dt

�
Z tf

0

Z
Cd

T pqar
n dCd dt þ

Z tf

0

Z
Cc

hT pT a
1 dCc dt

�
Z tf

0

Z
X

cT p dT a

dt
dXdt �

Z tf

0

Z
X

cT p dT a

ds
dXdt

¼
Z

X
cT aT p dX

� �
t¼0

þ
Z tf

0

Z
X
ðT af p þrT a � q�pÞdXdt

þ
Z tf

0

Z
CT

T 0pqa
n dCT dt �

Z tf

0

Z
Cq

T aq0p
n dCq dt

�
Z tf

0

Z
Cd

T aqrp
n dCq dt

þ
Z tf

0

Z
Cc

T aðhT p
1 � qC � rCvp

nÞdCc dt. ð22Þ

Thus, the following transformation rule between the time
t of primary and additional problems and the time s of
adjoint problem is considered

s ¼ tf � t; t ¼ tf ) s ¼ 0; t ¼ 0) s ¼ tf ð23Þ
It follows, that the final time t = tf at the primary and addi-
tional problem is equivalent to the starting time at the
adjoint problem. Consequently, the derivatives of tempera-
ture are equal to � dT a

ds ¼ dT a

dt . Considering Eq. (22) into the
right-hand side of Eq. (17), we can observe the vanishing of
some sum of integrals, if the following conditions are
satisfy

T aðx; s ¼ 0Þ ¼ 1

c
W; _T ðx; t ¼ tfÞ x 2 ðX [ CÞ;

f aðx; sÞ ¼ W;T ðx; tÞ �
d

dt
W;T ðx; tÞ x 2 X;

q�aðx; sÞ ¼ rrT Wðx; tÞ þ rqWðx; tÞ � AðxÞ x 2 X;

T 0aðx; sÞ ¼ c;qn
ðx; tÞ x 2 CT ;

q0a
n ðx; sÞ ¼ �c;T ðx; tÞ x 2 Cq;

T a
1ðx; sÞ ¼

1

h
c;T ðx; tÞ þ c;qn

ðx; tÞ x 2 Cc;

qar
n ðx; sÞ ¼ r½T aðx; sÞ�4;

T aðx; sÞ ¼ �c;T ðx; tÞ
r

� �0:25

x 2 Cd .

ð24Þ
The first-order sensitivity expression Eq. (17) can be
transformed using Eq. (24) to the form

F p ¼ �
Z

X
ðW; _T � cT aÞðT p �rT � vpÞdX

� �
t¼0

þ
Z tf

0

Z
X
ðrqWþrT aÞ � q�p þ ðW;f þ T aÞf p

 �

dX

�

þ
Z

CT

ðc;T þ qa
nÞðT 0

p �rCT 0 � vp
C � T ;0nvp

nÞ
h

�c;qn
qC � rCvp

n

i
dCT

þ
Z

Cq

ðc;qn
� T aÞðq0

np �rCq0
n � v

p
C � q0

n;nvp
nÞ

h

�T aq0
C � rCvp

n

i
dCq

þ
Z

Cc

T ahT p
1 � T aq�CrCvp

n � c;qn
hT p
1

h i
dCc

�
Z

Cd

T aqrp
n dCd þ

Z
C
ðWþ c;n � 2HcÞvp

n dC

þ
Z

C
c;T1T p

1 dCþ
Z

R
�cvp � t½

�
dt. ð25Þ

Introducing the conditions stated by Eq. (18), we sim-
plify the first-order sensitivity expression to the following:

F p ¼ �
Z

X
ðW; _T � cT aÞðT p �rT � vpÞdX

� �
t¼0

þ
Z tf

0

Z
X
ðrqWþrT aÞ � q�p þ ðW;f þ T aÞf p

 �

dX

�

þ
Z

CT

ðc;T þ qa
nÞðT 0

p �rCT 0 � vp
C � T ;0nvp

nÞ
h

� c;qn
qC � rCvp

n

i
dCT

þ
Z

Cq

ðc;qn
� T aÞðq0

np �rCq0
n � v

p
C � q0

n;nvp
nÞ

h

� T aq0
C � rCvp

n

i
dCq

þ
Z

Cc

ðT ahþ c;T1ÞT
p
1 � T aq�CrCvp

n


 �
dCc

�
Z

Cd

T aqrp
n dCd þ

Z
C
ðWþ c;n � 2HcÞvp

n dCþ
Z

R
�cvp � t�

�
dt.

ð26Þ
Similarly as the sensitivity expression for the direct

approach, above expression is a sum of integrals of time
as well as within the domain X, on the external boundary
C, its portions CT, Cq, Cc, Cd and along the discontinuity
curve R. The thermal state fields characterizing the adjoint
structure (i.e. Ta, qa, qa

n) are obtained from Eqs. (20), (21)
and (24). Summarizing, formulation of the first-order sen-
sitivity vector Fp requires now the solution of N + 1 prob-
lems if the number of functionals is equal to N, as is easy to
check.
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5. Shape optimization problem

By the shape optimization we mean the minimization of
the objective functional with the imposed constraint on the
structural cost C. Assuming the homogeneous structure in
real technical problems, the structural cost is in fact pro-
portional to the area of domain X. Thus, for the unit cost
u we can denote this problem as follows

Minimize F or minimize ð�F Þ

Subject to C � C0 ¼
Z

X
udX� C0 6 0; ð27Þ

We may introduce the Lagrange functional given in the
form

F 0 ¼ F þ vðC � C0 þ n2Þ ð28Þ
The physical interpretation of the variable n2 is given for

example in [5]. Following the stationarity of Lagrange
functional Eq. (28), the following optimality conditions
are stated

DF
Dbp
¼ �v

R
X uvp

n dC;R
X udX� C0 þ n2 ¼ 0.

(
ð29Þ

In order to solve these optimality conditions we should
determine the first-order sensitivities using the direct and
adjoint approaches represented by Eqs. (17), (19), (25)
and (26), respectively. Consequently, the objective func-
tional should be next stated. Dems and Korycki [4] present
some most used objective functionals. The first cited form
is the following:

F ¼
Z

C
qn dC; C 2 Cexternal ð30Þ

Minimization of above functional corresponds to design of
optimal heat isolator, whereas for a model of heat radiator
the functional Eq. (30) should be maximized

F ¼
Z

X
f dX ð31Þ

The form of functional is associated with the amount of
heat generated within the structural domain. Thus, the
optimal shape can be considered from the point of mini-
mizing or maximizing of Eq. (31).

F ¼
Z

C

T
T 0

� 	n

dC

� �1
n

; n!1 C 2 Cexternal ð32Þ

The functional is now the global measure of maximum
local temperature within the domain and can help to deter-
mine the optimal shape of structural boundary minimizing
the temperature distribution within the structure, respec-
tively.
6. Numerical example

The discussed expressions can be applied to the two-
dimensional shape optimization of the isolated inlet chan-
nel with a steam (Fig. 7). Let us assume the thermal ortho-
tropic material of the thermal conductivity matrix equal to

A ¼
A11 A12

A21 A22

����
���� ¼ 0:042 0

0 0:032

����
���� W

m K

� �
ð33Þ

Upper part of the filling has the prescribed tempera-
ture changed in time according the function T 0 ¼ 390 þ
expð0:01tÞ ½K� . The calculation were performed for t0 =
0, tk = 240 s, Dt = 60 s. Thus, the temperature changes
from the initial value T = 391 K to the final value T =
401.023176 K. All other parts of the boundary are ther-
mally isolated and consequently the heat flux density is
equal to zero qn = 0 on these portions. The gray and
diffuse walls of the channel have the prescribed constant
values of the temperature T = 340 K and the surface emis-
sivity e = 0.15. The steam within the channel is an iso-
thermal, participating medium of the constant absorption
coefficient a = 0.20.

Let us assume that the heat generation source and the
initial heat flux density are equal to zero (f = 0,q* = 0).
The primary problem can be introduced in view of Eq.
(1) as follows:

�divq ¼ c dT
dt

q ¼ A � rT

�
x 2 X;

T ¼ T 0 ¼ 390þ expð0:01tÞ ½K� on CT ;

qn ¼ 0 on Cq;

n � ~qr xð Þ ¼ ~qr
n x 2 Cr;

T ¼ T 0 on X [ C

ð34Þ

The radiative heat flux density is the solution of the con-
dition according Bialecki, cf. Eq. (2). The shape optimiza-
tion is a simple engineering problem of structural heat
isolator with imposed equality constraint on the cost in
the form (cf. Eq. (30) and Fig. 7a)

F ¼
Z

CT

qn dCT ! min subject to C � C0 ¼ 0. ð35Þ

Let us compose the external boundary using the 7 piecewise
linear portions, the main curvatures of the boundary are
H! 0.

First we discuss the direct approach to sensitivity analy-
sis. Using as well Eqs. (1), (7), (35), as assuming the mate-
rial derivatives ðq0

nÞp on Cq, (T0)p on CT, (T0)p on X [ C
as known in advance, the additional structure can be
described by following equations:

�divqp ¼ c dT p

dt

qp ¼ A � rT p

�
x 2 X;

qp
nðx; tÞ ¼ 0 x 2 Cq;

T pðx; tÞ ¼ �rT 0 � vp x 2 CT ;

n � ~qp ¼ ~qrp
n x 2 Cr;

T p
0ðx; 0Þ ¼ �rT 0 � vp x 2 ðX [ CÞ.

ð36Þ

To obtain the heat flux density ~qrp
n normal to the boundary

portion Cr we introduce the total hemispherical emissivity



L

a b1 T T=T0 b1 b
b2 b3

q q

qn=0 qn=0
L

b4 b5

b6 b7

0.2L
b8 q qn=0 b9

x2 b10 b11 b12

0.2L
x1

c optimal d

initial

r
nq~

8.0

10.0

9.0

7.0

G/T0 ×10 3

1 3 5 7 iteration

T=363K

a=0.20 r

Γ

Γ

Γ

ε =0.15

Γ

Γ

⏐ ⏐

Fig. 7. Shape optimal design of isolated channel with a steam inside: (a) design parameters and boundary conditions, (b) FEM-net, (c) initial and optimal
shapes, (d) optimization history.
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as position independent and should solve the radiation
equation Eq. (16) for the additional structure. Next, the
first-order sensitivity vector can be determined by the sim-
ple adaptation of Eq. (17).

Our next goal is to determine the equations for adjoint
approach to sensitivity analysis. Making use of Eqs. (20),
(24) and (35), we formulate this problem as follows:

divqa ¼ c dT a

ds

qa ¼ A � rT a

�
x 2 X;

T aðx; sÞ ¼ T 0aðx; sÞ x 2 CT ;

qa
nðx; sÞ ¼ n � qa ¼ q0a

n ðx; sÞ x 2 Cq;

n � ~qar ¼ ~qar
n ðx; sÞ x 2 Cr;

T aðx; s ¼ 0Þ ¼ T a
0ðx; s ¼ 0Þ x 2 ðX [ CÞ;

T aðx; s ¼ 0Þ ¼ 0 x 2 ðX [ CÞ;
f aðx; sÞ ¼ 0 x 2 X;

f aðx; sÞ ¼ 0 x 2 X;

q�aðx; sÞ ¼ 0 x 2 X;

T 0aðx; sÞ ¼ 1 x 2 CT ;

q0a
n ðx; sÞ ¼ 0 x 2 Cq.

ð37Þ

The radiative heat flux density ~qar
n has the simple form de-

scribed by Eq. (21). The radiation equations for primary,
additional and adjoint structures were solved using the
weighted residual method (cf. [8]).
The independent design parameters are 12 coordinates
of the selected points on the external boundary, which
are depicted by the arrows b1–b12 on Fig. 7a. The upper
part of the external boundary contact the floor. Conse-
quently, this part of the boundary has the same number
of design variable, i.e. the same vertical coordinate during
the optimization process.

The analysis step of the optimization procedure was per-
formed using the Finite Element Method. The structure
domain was discretized using the 4-nodal elements net
(cf. Fig. 7b). The solution procedure is iterative. At each
step we should solve first the primary problem, next the
additional problems or the adjoint problem, respectively,
and the obtained results are necessary sensitivities. At the
synthesis stage the second-order Newton procedure and
the method of steepest descent are applied alternatively
to find the directional minimum. The initial and the opti-
mal shapes of the structure are shown in Fig. 7c. It can
be seen from Fig. 7c, that the optimal boundary is located
far from the hole with isothermal and participating med-
ium. The history of optimization process is shown briefly
in Fig. 7d, where the changes of objective functional are
plotted in terms of iteration number.

Let us next rotate the hole with isothermal and partic-
ipating medium and the rotation center is located on the
lower part of the filling (Fig. 8b). The external boundary
of the filling is now stationary. Thus, we have now only
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one design parameter, which is the rotation angle. We
assume that the left-hand side of the isolation has the pre-
scribed temperature. All other portions of the external
boundary are thermally isolated and the heat flux density
is equal to zero qn = 0 (see Fig. 8a). The additional con-
straint is in this case the minimal dimension of the exter-
nal isolation, which is equal to D = 0.1L (see Fig. 8b). The
initial and optimal location of the hole for the same objec-
tive functional as before, cf. Eq. (35), are depicted now on
the Fig. 8. The boundary portion CT of the optimal struc-
ture is located so far as possible from the hole with an
isothermal and participating stream inside. The heat flux
through the left-hand side of external boundary is conse-
quently minimized and the optimal solution was improved
with 10.21% in comparison to the initial value, in nine
iterations.

7. Conclusion remarks

The aim of this paper was to present the application of
direct and adjoint approaches to sensitivity analysis in the
shape optimization problems with radiation on the internal
and external boundary portions. The first-order sensitivity
vectors were formulated using as well the material deriva-
tive concept as direct and adjoint approaches to sensitivity
analysis. The direct method is convenient for the low num-
ber of functionals, because the number of additional solu-
tions is equal to number of functionals. The disadvantage
is in this case the complicated form of the integral radiation
condition. The problem is easier to solve for the simplified
form of equation (i.e. position independent radiation prop-
erties and stationary shape of the hole). The adjoint method
is useful for the low number of objective functionals, but is
requires the transformation of time. The radiation equation
has the same form as for the primary structure and is more
convenient to calculate the radiative heat flux density.

We introduce also an effective tool for generating the opti-
mal boundary shapes for a wide class of design and redesign
problems with radiative heat transfer. Thus, the obtained
first-order sensitivity expressions can be also applied to solve
the shape identification problems, respectively. Obtained
results can be verified by differential numerical methods.
The detailed analysis of such implementations and their effi-
ciency and accuracy is beyond the scope of this paper and
will be studied in details in consecutive paper.
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